
 Version NISTUGV0.2
January 14, 2002

NIST DASE DEVELOPMENT ENVIRONMENT

USER’S GUIDE

 2

1 INTRODUCTION .. 4
2 VERSION AND USE INFORMATION ... 4
3 TERMS AND CONVENTIONS .. 4
4 COMPONENTS OF THE SIMULATION ... 5

4.1 Native Libraries ...5
4.2 Java Libraries..5
4.3 ATSC Simulation Data...5

5 INSTALLATION AND USAGE .. 6
5.1 Environment Setup..6

5.1.1 Setting the CLASSPATH Environment Variable ..6
5.1.2 Setting options for the Java command..6

5.2 Installing and Compiling..6
5.3 Running the Simulation...7

5.3.1 JavaSTBMain Usage ..8
5.3.2 Feeding Data Into the Simulation...9
5.3.3 Simulation State Data ...10
5.3.4 Example Test Applications and Tools...10

6 RUNNING AND CONTROLLING XLETS ... 10
6.1 Running Xlets on the Simulation Command Line ..10
6.2 Running Xlets from a Data Stream ..11
6.3 Control of Xlets: Application Selection ...11
6.4 Example Xlets..11

6.4.1 ServiceLoopXlet ...11
6.4.2 Weather X-let ...12
6.4.3 Stock Ticker X-let ...12

7 THE DTVSIMULATOR APPLICATION... 12
8 THE DATAGEN APPLICATION.. 14

8.1 Syntax ...15
8.2 Command line syntax..15
8.3 Commands..15

8.3.1 Quick overview...15
8.3.2 RESET ..16
8.3.3 EXEC...16
8.3.4 READOBJ ..16
8.3.5 WRITEOBJ ..16
8.3.6 READATSC ...16
8.3.7 WRITEATSC ..17
8.3.8 WRITEMPEG...17
8.3.9 IMPORTDATASERVICE ...17
8.3.10 GENERATESEQUENCE...17
8.3.11 NEWVIRTUALCHANNEL..17
8.3.12 NEWEVENT...17
8.3.13 DELVIRTUALCHANNEL ...18
8.3.14 DELEVENT..18
8.3.15 ISOLATEONESOURCE ..18
8.3.16 ISOLATEONETRANSPORTSTREAM..18
8.3.17 REBUILDPAT...18
8.3.18 REBUILDPMTPAT..18
8.3.19 NEWPROGRAM...19
8.3.20 DELPROGRAM..19
8.3.21 NEWPROGRAMELEMENT...19
8.3.22 DELPROGRAMELEMENT ..19
8.3.23 DELCAROUSEL...19
8.3.24 DELORPHANCAROUSELS ..20

 3

8.3.25 DELDATASERVICE..20
8.3.26 CHANGETSID..20
8.3.27 PRINT..20

8.4 Assumptions and Simplifications..20
9 THE FEEDER PROGRAM... 22

9.1 Main window (ControlFrame component)..22
9.2 Browser window (FileContentFrame & TreeContentPrintStream components).....................22
9.3 Parameters window (Settings component)..22

ANNEX A. JAVA RUNTIME ENVIRONMENT EXTENSIONS ... 23
A.1 Details of the CarouselFileConnection Class ..24

ANNEX B. BITSTREAM SYNTAX .. 24
ANNEX C. PLATFORM INSTALLATION NOTES ... 27

C.1 Summary of supported Platforms ...27
C.2 Linux Notes ...27
C.3 Windows NT Notes..27

ANNEX D. FILE FORMATS USED BY DATAGEN.. 28
D.1 OBJ File...28
D.2 “.atsc” File...28
D.3 MPEG File..29
D.4 DS File ...29
D.5 SEQ File ..31

ANNEX E. EXAMPLE SETUP ENVIRONMENTS.. 32
E.1 CSH Shell Example..33
E.2 BASH Shell Example ...33

 4

1 INTRODUCTION
This document describes the use of the NIST DASE Development Environment (NIST DASE DE). It is
composed of a Set-top Box (STB) simulation, a PAE prototype implementation, example applications, and
tools. The purpose of the Simulation is to allow the execution of Digital TV Application Software Environment
(DASE) programs. These programs use the DASE Application Programming Interface (API) to retrieve data
from the Simulation. The DASE API communicates with the simulation via a Hardware Abstraction Layer
(HAL) in order to isolate the API from the underlying system functionality and data management.

The User’s Guide describes the components of the simulation and instructions on how to install, compile,
and run the simulation. In addition it describes the platform requirements, utility programs, the java runtime
environment extensions, the NIST bit stream syntax and example application use cases, and helpful tips and
examples for using the simulation.

2 VERSION AND USE INFORMATION

This version of the User’s Guide corresponds to the NIST DASE Development Environment distribution
labeled NISTDEV0.2. The name of the uncompressed download file is nistdeV0.2.tar. The instructions for
installation and usage apply to the Solaris and Linux platforms. Hints for porting the environment to a
Windows platform are given in sections C.3.

3 TERMS AND CONVENTIONS

ATSC Data A file containing simulated ATSC transport stream data. The file is used as input for
the NIST STB simulation. The file is created by the Data Generator program and is
designated with .atsc file extension.

DASE Application An application that uses some of the PAE APIs, but not limited to them. A receiver
resident application (A native EPG is an example).

Data Generator A utility program used to create simulated ATSC DATA.
DE Development Environment, the NIST DASE Development Environment that

includes among other things the prototype PAE API implementation, ATSC STB
simulation, and sample X-lets.

DTV Simulator An application that controls the functions in the STB simulation. A simulated GUI
Remote Control is used for input and a simulated GUI DTV Display is used for
output.

Feeder A GUI utility program that can be used to input pre-determined ATSC DATA files
into the STB simulation.

HAL Hardware Abstraction Layer; The HAL is a layer of software that isolates the API
from the underlying STB functionality.

JavaSTBMain The java class file used to start (run) the NIST STB Simulation.
JREx Java Runtime Environment Extensions
PCR Manager Provides a program clock reference to the HAL JMF player
STB Simulation The NIST STB Simulation encapsulates the functionality of an ATSC STB

necessary to implement the DASE PAE.
X-let An application that adheres to the X-let specification.

In the examples that follow, certain shell variables are used to facilitate explanations.
The table below list example shell variables with pre-defined values.

Shell Variable Description Example
HOME Home directory of user /export/home/rob
ROOTDIR Root directory of the NIST DASE DE /export/home/rob/nist_ri
RUNTIME Directory containing compiled java and c files $ROOTDIR/simulation/runtime
JAVA_HOME Location of Java Distribution /usr/java

 5

4 COMPONENTS OF THE SIMULATION
The Simulation is comprised of several components, the majority is written in the Java language and some
is written in the ‘C’ language. The Java components, existing as Java byte code libraries, are portable to any
platform supporting a Java virtual machine. The ‘C’ components are compiled for the host system

4.1 Native Libraries
The “native” libraries consist of support functions written in the ‘C’ language.

The library libjreX.so contains bridging functions that allow the replacement java.io classes to
communicate to the underlying native Java IO implementation. The location of this library must be found on
the path set in the LD_LIBRARY_PATH when the Java runtime environment (JRE) extensions are used.
These extensions are part of the NIST prototype implementation and are modifications to the Java runtime
environment (JRE) necessary to use the Data Carousel API. ANNEX A describes the JRE extensions in
detail. After compilation the libjreX.so library is placed in the $HOME/nist_ri/simulation/runtime
directory.

Another ‘C’ program is the PCR Manager, which provides a program clock reference to the HAL JMF player.
This program, PCRManager, is part of the NIST DE distribution and must be in the user’s path. The build
system places PCRManager in the nist_ri/bin directory. Update: the PCRManager source code is in
the distribution, but has been removed from the build process. The PCRManager can be used to
synchronize simulated video. No action is necessary if you don’t want this feature.

4.2 Java Libraries
The core of the STB simulation is implemented in Java. All of the DASE API and the HAL are implemented
in Java and delivered as Jar files. After executing the build process for the NIST prototype implementation
you will have these Jar files (under the $HOME/nist_ri/simulation/runtime directory):

• dase.jar The DASE API and NIST hardware abstraction layer (HAL)

• stb.jar The STB simulation classes

• jreX.jar Contains classes that replace some java.io classes in order to provide Carousel file reading.
Only built when JRE extensions are enabled in the configuration step.

• devkit.jar Contains utilities, tools, example DASE applications and X-lets.

Other components needed are the Java runtime environment jar files and the Java Media Framework (JMF)
jar files. The NIST DE has been developed and built using the Java Development Kit (JDK) and JMF toolkits
from Sun Microsystems.

4.3 ATSC Simulation Data

Sample simulation atsc data files are located under the $HOME/nist_ri/simulation/data directory.
These files are used to statically initialize the STB simulation with atsc transport stream data. The atsc files
are static representations of atsc table information. These files are used when running the simulation with
the command line interface. See the section 5.3.2 for details. You can also create your own test data (atsc
files) with the Data Generator utility. See section 8.

 6

5 INSTALLATION AND USAGE

5.1 Environment Setup

5.1.1 Setting the CLASSPATH Environment Variable

The environment variable CLASSPATH must be set prior to running the Simulation. This variable is used by
the Simulation to find the Jar files for the NIST DE and is passed to the Java virtual machine created by the
Simulation controlling process. The Jar files for the Java Media Framework must also be located on this
path.

An example CLASSPATH would be set using csh as follows:

setenv CLASSPATH ${HOME}/nist_ri/simulation/runtime/stb.jar:\

${HOME}/nist_ri/simulation/runtime/dase.jar:\

${HOME}/nist_ri/simulation/runtime/devkit.jar:/usr/java/jre/lib/jmf.jar

If the Simulation does not find the Java runtime libraries they must be added to the CLASSPATH as well.
For the Sun JDK 1.2, they are usually located in usr/java/jre/lib/rt.jar. However, the Sun JVM
will usually find these libraries.

Examples of .cshrc and .bashrc files can be found in Annex E.

5.1.2 Setting options for the Java command

In order to use the JREx functionality, certain options need to be set for the Java command. It is
recommended that you set up the following alias and use the alias to start the simulation (see section 5.3.1).
Here is a csh example.

setenv RUNTIME ${ROOTDIR}/simulation/runtime
alias j 'java -Xbootclasspath:${RUNTIME}/jreX.jar: \
${JAVA_HOME}/jre/lib/rt.jar:${CLASSPATH} -
Dsun.boot.library.path=${JAVA_HOME}/jre/lib/i386:${RUNTIME}'

Examples of .cshrc and .bashrc files can be found in Annex E.

5.2 Installing and Compiling

The build/make process has been tested under both Solaris and Linux.

1. Un-archive the distribution "tar" file (nistdeV0.1.tar) by typing:

% tar -xvf nistde.V0.1.tar

This creates a subdirectory called 'nist_ri' in the current directory. The full path of the 'nist_ri'
directory is referred to as 'ROOTDIR' in this document.

2. Change your current directory to 'nist_ri' by typing:

% cd $ROOTDIR

3. Configure the NIST RI for your system by typing:

% ./configure

It is assumed here that you will build the NIST RI on the same system that you are using to run
configure.

 7

Note, configure must be able to correctly locate where the JDK and JMF are installed. These
locations will vary based on the local system, and can be specified to configure directly (if
necessary) through the use of command line options to configure:

--with-jdk=<path> Specify the location of the JDK

--with-jmf=<path> Specify the location of the JMF

Also, if Java runtime environment extensions to enable Carousel file reading are available (not all
distributions of the NIST DASE DE include this), they can be optionally configured for compilation
using:

 --with-jrex Include JRE extensions in the compilation

For most installations, the configure command will be:

% ./configure –with-jrex

In a public distribution of the NIST DASE DE, you may have to rewrite some of the java.io classes.
For each class, an exhaustive list of changes is in the tree
($ROOTDIR/ext/jreX/javalib/changes/*.txt), based on the JDK 1.2.2 sources. In order to run Xlets
that access the Data Carousel (e.g., the Stock Ticker), you need the jre extensions.

Following these lists, you will write each class and put the new source code under
$ROOTDIR/ext/jreX/javalib/src.

4. Compile the NIST DASE DE on your system by typing:

% make

If successful, the api, simulation and application jar files (dase.jar, stb.jar & devkit.jar) will be
installed to the '$ROOTDIR/simulation/runtime' subdirectory. (If the --with-jrex option was specified
to configure, the jar file jreX.jar and the library file libjreX.so will be installed there as well) In
addition, the JMF test program, PCRManager, will be installed in the '$ROOTDIR/bin' subdirectory
(Update: not unless to explicitly include the PCRManager into the build process. Currently it is
removed.)

To restore (clean) the distribution tree to its original state use “make distclean”. To rebuild, follow steps 3
and 4 above.

% cd $ROOTDIR

% make distclean

Note: On some systems, a potential compiling problem exists, where “java tools.simulation.DataGen –c …”
hangs. The solution is unknown, however, some work-a-rounds appear to work: 1) kill the compile, and
retype make, 2) kill the compile, do a make distclean, and then a make. In any event, at this point the
implementation has compiled, the “DataGen” program is creating data files for the demonstration and is not
necessary needed to run the simulation.

5.3 Running the Simulation

Now that the appropriate environment variables have been set and the NIST DE has been compiled, you are
ready to run the Simulation. The execution of the Simulation will be described first, followed by a specific
example on starting the Simulation and executing a DASE application.

The NIST DE should have been installed in a location where the user has write permission to the file
system. In the examples that follow, it is assumed that the NIST DE has been installed in the user's home
directory ($HOME).

 8

5.3.1 JavaSTBMain Usage

The root application in the simulation is JavaSTBMain. To start the Simulation, run the Java program
gov.nist.hwabstract.JavaSTBMain. The syntax is:
Usage: java gov.nist.hwabstract.JavaSTBMain [-l] [-r <fifoName> | -r <fileName>] [-s] [-pcr] [-t <n>] [-h | -
help]

Note in order to run Xlets using the Java Runtime Environment extensions (jreX), replace ‘java’ with
the ‘j’ alias defined in ANNEX E. It is highly recommended that you use the j alias in all cases.

Option Synopsis

-l Logs to several .logs files

-r Read ATSC data from a regular file

-f Read ATSC data from a FIFO file

-s Auto start the DtvSimulator and the DTV Display

-pcr Starts a PCRManager

-t Create and use <n> FIFOs for controlling <n> tuners (same path as <fifoName>/<fileName>

-h or -help Prints help information

Default -f $HOME/inputFIFO

JavaSTBMain will create a data FIFO named inputFIFO in the current directory if the -f option is not
used. If the –f option is used; the name of the FIFO must also be given. Similarly, when the -r option is
used, the name of a regular file must be given on the command line. These options are mutually exclusive
and the last option given will take effect.

JavaSTBMain initializes the Java virtual machine and creates the STB Simulation manager thread inside
the JVM. If all goes well, a prompt will appear allowing you to type in the name of a Java application to run.
All of the class files for this application must be found on the CLASSPATH. There are several example
applications in the devkit directory of the distribution. The applications are placed in the Jar file
devkit.jar located in the nist_ri/simulation/runtime directory.

The –t option allows you to select the number of tuners for the STB simulation. Support for multiple tuners at
this time is limited. It is recommended that only one tuner be used at present.

The -s option causes the Simulation controller to start up the
applications/native/dtvsimulator/DtvSimulator object located in devkit.jar. This
object is the graphical controller for the DTV simulator, allowing startup of the EPG and other native
applications from a simulated remote control. This option also turns on the DTV display window. A detailed
description of the DTV Simulator application can be found in section 7.

The name of the application to run must be fully qualified. For example, to run the application
DtvSimulator from package applications.nativeapps.dtvsimulator, then the name you
need to enter on the Simulation command line is
applications.nativeapps.dtvsimulator.DtvSimulator.

If the application class cannot be found, you will receive the message Can't find class for
application ‘appname’. You will also receive this message if any of the classes that are used by the
application cannot be found.

 9

After the application is started, you are prompted for another application to run. By entering ‘+’, you can run
the previous application again (e.g. a new instance of the same class). However, note that the reappearance
of the prompt does not mean that the application has finished. If the application creates threads, those may
still be running.

Optional logging may be turned on by using the –l option with JavaSTBMain. The messages from
JavaSTBMain and the JVM are stored in the log file Java_STBMain.log. Messages from the Java
simulation objects are stored in Java_STBSim.log, while HAL messages are stored in file
Java_HWAbstract.log. These log files are created in the directory where JavaSTBMain is run.
Additionally, all error messages are written into the corresponding log file if logging is selected. With no
logging those selected error messages go to stderr.

To end the simulation, type q on the command line. Alternatively, pressing CTRL-C will terminate the
simulation cleanly. If the simulation is terminated with a SIGTERM signal from another process it will
shutdown cleanly. However, if a SIGKILL signal is sent to the JavaSTBMain process (using the ‘kill –9’
command), then the PCRManager process (if started) will not be terminated. This process must then be
terminated independently of the JavaSTBMain process.

There are two ways to run Xlets in the simulation. The first way is via a command line interface built into the
simulation, called RunXlet. The second method is via a native DTV Simulator with a Remote Control
application. Details of these options are found in section 6 and section 7.

5.3.2 Feeding Data Into the Simulation
The STB Simulation expects to receive a data stream containing ATSC tables. This stream is fed to the
Simulation over a FIFO created by the Simulation. By default, the FIFO is created in the users $HOME
directory, and is called inputFIFO. By using the -f parameter to JavaSTBMain, you can change the
location of the FIFO. However, you must have the appropriate file permissions to create the FIFO.

Here's an example of how to run the Simulation with complete logging and specifying the location of the
FIFO:

% j gov.nist.hwabstract.JavaSTBMain -l -f $HOME/inputFIFO

Any feeder program can be used as long as the data stream is compatible with the Simulation. The output of
the data feeder should be redirected to the FIFO used by the Simulation, as discussed above. Appendix
Bitstream Syntax describes the bit stream syntax.

Example data streams are located in the nist_ri/simulation/data directory of the distribution.
Data can be fed into the Simulation by sending it directly to the FIFO from the data file by using the cat
command in Unix. For example, if the data file is simple.atsc then use this command:

% cat $ROOTDIR/simulation/data/simple.atsc > $HOME/inputFIFO

The alternative method to inject data into the Simulation is to have the data read from a single file by
specifying the -r parameter to JavaSTBMain. The same data file sent into a FIFO can be read directly by
using this command:

% j gov.nist.hwabstract.JavaSTBMain -r $ROOTDIR/simulation/data/simple.atsc

Using this method saves time and removes the extra step of sending the data into a FIFO. However, only
the data read at startup can be used; no updates are possible.

The utility program called Feeder provides another way to send data into the simulation. This program has a
graphical interface and can be set with pre-defined data files. The Feeder program is used in the Dtv
Simulator demonstration. See sections 7 and 9 for details.

 10

There is a program in the devkit.jar library called ShowATSCTables that will dump the contents of
the current data tables. To run this program, type tools.simulation.ShowATSCTables on the
Simulation command line.

5.3.3 Simulation State Data

When the Simulation is started, it attempts to locate the file STBSim.dat in the current directory. This file
contains the data used by the Simulation to maintain information about the STB environment. Users,
common references and other environment information are contained in this file. If this file is not present, the
Simulation will print a warning message, but execution will continue.

There is a program in the devkit.jar library called CreateSTBDatabase. This program is executed
by entering tools/simulation/CreateSTBDatabase on the simulation command line. This
program creates several users along with their preferences, the common preferences, and some STB
settings. The Simulation manager saves these settings into the file STBSim.dat. The next time the
Simulation is started these settings will be retrieved from that file.

There is a companion program called ShowSTBDatabase that can be run to display the current users and
common settings of the Simulation. This program is executed by entering
tools.simulation.ShowSTBDatabase on the Simulation command line.

5.3.4 Example Test Applications and Tools

This section shows how to run a simple test application in the simulation. Example test applications can be
found in the nist_ri/devkit/src/testsuite/api directory. This suite contains simple applications (not Xlets)
that exercise specific aspects of the API implementation. These tests can be used to see if you have the
simulation and data initialization set up properly. The test suite also provides a way for quickly testing
modifications to API implementations. Below is an example of how to run test the SIManager API test.

% j gov.nist.hwabstract.JavaSTBMain –r $ROOTDIR/simulation/data/simple.atsc
--simulation output--
> testsuite.api.SIManagerTest
--output from SIManagerTest—

The distribution also contains tools that for running Xlets, creating STB state data, and more. The tool
RunXlet, for running Xlets is started from the simulation command line as well. See section 6 for details.

6 RUNNING AND CONTROLLING XLETS

6.1 Running Xlets on the Simulation Command Line

Xlets cannot be directly executed from the Simulation command line because they contain no main()
method, and they have special requirements from the DASE API. Therefore, in order to run Xlets, a native
application called RunXlet is required. This application is located in package tools.simulation and
is part of the devkit.jar library. In order to execute RunXlet, enter
tools.simulation.RunXlet on the Simulation command line.

RunXlet takes the name of the Xlet's entry point class and submits the information on running the Xlet to
the Application Registry. From that point on, control of the Xlet can be done via the native Application
Selection program. RunXlet accepts Xlet names as input until quit is entered. All of the Xlet’s classes
must be located on the CLASSPATH.

 The devkit branch of our tree contains a few Xlets that you can try. It is advised to feed the
Set-Top Box simulation first (see section 5.3.2) with some data before launching an Xlet by hand. Data

 11

files with ‘.atsc’ extension can be found in our tree under ‘nist_ri/simulation/data’. Following is a
list of Xlet classnames you can type in the RunXlet command line:

§ applications.xlets.simple.ServiceLoopXlet
§ applications.xlets.weather.WeatherXlet
§ applications.xlets.stock.StockTicker
§ applications.xlets.dae.XdmlXlet

The ServiceLoopXlet is the simplest one and can be used as a starting point to test your setup. The source
code for these Xlets can be found in the nist_ri/devkit/src/applications/xlets branch of the distribution tree.

6.2 Running Xlets from a Data Stream
Xlets can be injected into the ATSC data stream along with their data. These Xlets can be auto-started, and
are controlled by using the ApplicationSelection native application.

In order to build the data stream, use the DataGen program located in package tools.simulation.
This program is intended to be run from the operating system command line, like any other Java program:

% java -classpath nist_ri/simulation/runtime/devkit.jar: nist_ri/simulation/runtime/stb.jar DataGen

Entering “help” at the DataGen command line shows a menu of possible options. In order to create a data
stream with an embedded Xlet, you must first create a data service description file. Section 8 describes the
DataGen program in detail.

6.3 Control of Xlets: Application Selection

The native application ApplicationSelection in package applications.nativeapps.menu
can be used to control Xlets via a graphical interface. This program can be started from the Simulation
command line by entering applications.nativeapps.menu.ApplicationSelection.
Alternatively, ApplicationSelection can be launched from the DtvSimulator (see section 7)
remote by pressing the APPS button.

ApplicationSelection allows the user to start, pause, and destroy Xlets. However, if an Xlet that was
injected via a data stream is destroyed, it will no longer be available unless it is re-injected with a new Data
Service Table update. The simple way to accomplish the update is the inject a different Xlet (and hence a
different Data Service Table), and then re-inject the first Xlet.

6.4 Example Xlets

This section gives examples of how to run Xlets from the simulation command line interface. For each
example the commands, input, and expected output is given.

6.4.1 ServiceLoopXlet

ServiceLoopXlet is a simple Xlet that you should attempt to run first to verify that the NIST DASE DE is
installed correctly and working. ServiceLoopXlet will display the channel name in a HAVi button for each
Service in the transport stream data.

 % j gov.nist.hwabstract.JavaSTBMain –r $HOME/nist_ri/simulation/data/simple.atsc
> tools.simulation.RunXlet
RunXlet => applications.xlets.simple.ServiceLoopXlet

 12

A simulated DTV Display should appear with the name of the Service in a HAVi button in the upper left
corner of the screen. The Xlet will loop through the list of Services in the transport stream data displaying
each name with a delay between each.

In this example the simulation read data directly from the simple.atsc file given on the command line. The
simulation can also be populated with data by using a FIFO. In this manner the simulation can be feed data
dynamically. Below is an example of how to feed the simulation data with the FIFO.

 In terminal 1:
 % j gov.nist.hwabstract.JavaSTBMain –f $HOME/inputFIFO
 -> tools.simulation.RunXlet

 In terminal 2:
 % cat $HOME/nist_ri/simulation/data/simple.atsc > $HOME/inputFIFO

 In terminal 1:
 RunXlet => applications.xlets.simple.ServiceLoopXlet

6.4.2 Weather X-let

The Weather X-let displays a scrolling weather warning at the bottom of the screen along with a Map and
Exit buttons in the upper left corner. Clicking on the Map button will display a weather map. Press Exit to
terminate the X-let, including the scrolling warning message. Note that the weather Map and scrolling text
are currently static data. See the stock ticker X-let for an example of dynamic data via the Carousel.

% j gov.nist.hwabstract.JavaSTBMain
> tools.simulation.RunXlet
RunXlet => applications.xlets.weather.WeatherXlet

6.4.3 Stock Ticker X-let

The Stock Ticker Xlet provides scrolling stocks quotes at the bottom of the screen. The Stock Ticker uses
the Data Carousel APIs and therefore relies on the JREx functionality described previously in this document.

In terminal 1: (note by default, the fifo is $HOME/inputFIFO)
 % j gov.nist.hwabstract.JavaSTBMain
 -> tools.simulation.RunXlet

 In terminal 2:
 % j -classpath $CLASSPATH applications.xlets.stock.StockStreamer -i
$ROOTDIR/simulation/data/quoteList.serial -o $HOME/inputFIFO -pat -t 2000

 In terminal 1:
 RunXlet => applications.xlets.stock.StockTicker

Note that quoteList.serial contains a list of initial stock quotes that is read by the StockStreamer to create
dynamic quote information. The quoteList.serial file is created by the QuoteFileGen utility. If you want to
change the initial set of quotes, you’ll need to use this utility.

7 THE DTVSIMULATOR APPLICATION

One native application intended for control of the DTV Simulation environment is DtvSimulator
contained in package applications.nativeapps.dtvsimulator of devkit.jar. This native
application presents a virtual remote control that can be used to launch the native Electronic Program Guide
(EPG), the Application Selection program, as well as Simulation setup, such as preferences.

 13

The buttons on the remote control are disabled until the ON button is pressed.

The DTV Simulator demonstration consists of a GUI-based DTV Simulation application and GUI-based
Stream Feeder and Data Content Display utility programs. The DTV Simulation application has a simulated
Remote Control and DTV Display. This section describes how to run the demonstration using the pre-
defined transport stream data set.

The table below describes a step-by-step procedure for running the demonstration. The first 3 steps are
required and must be performed in the order indicated. Beyond this dynamic control of the demonstration is
possible. Terminal refers an X-Term or similar command line window.

Program Action Response

Terminal 1 % j gov.nist.hwabstract.JavaSTBMain –s –t 1 Launch the simulation and automatically start
DtvSimulator.

Terminal 2 % j tools.transport.Feeder -t Launch the Feeder and Data Content GUI
utilities and send pre-defined ATSC data into the
simulation.

DtvSimulator
Remote

Press the ON button Enable the remote control and turn on the DTV
Display. The DTV screen will change from a
black background to a picture of a moose.
Content Display panel folders will appear with
table information.

DtvSimulator
Remote

Select actions as described in Table 3 Remote
Control Functions. Press the up arrow repeatedly to
work through demonstration.

See Table 2 Channel Descriptions and
Table 3 Remote Control Functions

Content
Display

Click on the folders. Displays MPEG2 and ATSC table information.

Table 1 Running the DTV Simulator Demonstration

Some channels include Xlets. Table 2 describes what is contained on each channel.

Channel Number Scene DASE Application Description

TNT (2) Wildlife - Moose None None

NEWS (3) Middle East City Stock Ticker Xlet Scrolling stock quotes should appear at
the bottom of the screen. Note that
this Xlet requires jreX support.

TBS (4) News Room None None

NIST (5) Football Game Weather Xlet Scrolling weather warning appears at
the bottom of the screen. A Map and
Exit button appears in upper left corner.
Click on the map button to see weather
map. Map should appear below the
Map and Exit buttons. Press Exit to
terminate the entire Xlet.

CNN (6) Weather Map None None

ABC (7) Sports Car HTML Page
Presentation

 This example demonstrates a DAE
application. Click on the “Learn More”
button to bring up an HTML browser.
The display gives more information
about the car. Note that this is not a
DASE DAE or DAE application, this

 14

demonstrates the use of carousel
modules for DAE pages and the
Application Manager infrastructure
necessary for handling DAE
applications.

Table 2 Channel Descriptions

NOTE 1: The DTV Simulation application runs very slowly. You may need to wait for repaints of the
DTV Screen (or cause repaints to happen manually by hiding and redisplaying windows).

NOTE 2: On the NIST test platforms, running the DTV Simulation application can cause “Out of
memory ” errors if ran for extended periods. We have not attempted to isolate the memory leak.

Also on the remote control at the bottom are the “Guide”, “Apps”, “Menu” and “Disp” buttons. These buttons
control the Electronic Program Guide, Xlet Monitor Utility Application (Application Selection), User’s
Preferences Controls, and a Channel recall application. Table 3 describes the functionality of use of these
features.

Button Description

On Turns on the simulation. Loads transport stream data and tunes to channel 2.
Activates the other buttons on the remote control.

Off Disables the all remote control buttons except “On”.

Guide Starts the Electronic Program Guide (EPG) native application. An EPG will
transparently overlay the current screen. Click on the “Guide” again to remove the
EPG. Double-click on a program listing to get an extended description of the
program. Click on the description to return to the EPG.

Apps Starts the Application Selection native application. See section 6.3 for details.

Menu Starts the User’s Preference native application. Preferences can be used to set
favorite channels and more. See the section on User’s Preferences for details.

Disp The “Disp” (Display) button gives detailed program listing information for the
channel currently tune to. Click on the “Disp” button again to remove the display.

Up/Down
arrows

Used to change channels

Left/Right
arrows, Color,
PC, M

Not Functional

0-9 Numbers Can be use to directly tune to a single digit channels (For the demonstration pre-
defined data set, channels 2 to 7 are operational).

Table 3 Remote Control Functions

Please note that not all buttons on the remote are functional in the current implementation. The number
buttons can be used to directly tune to a channel.

8 THE DATAGEN APPLICATION

DataGen is a user interface giving access to a bundle of tools for creating & manipulating bit stream files
containing ATSC & MPEG data (.atsc files, see ANNEX B). Practically, it is a simple text interface to
manipulate a set of MPEG/ATSC tables & Data Carousel modules. This set sits in an instance
stb.dataypes.ATSCTableSet. This includes I/O file operations.

 15

Note: for a description of all different files formats manipulated by DataGen, please refer to ANNEX D.

8.1 Syntax
From the shell command line:
java tools.simulation.DataGen [-c <command line>]

• Without the -c option, DataGen runs in a loop, waiting for a user command line, executing it and
presenting the prompt for another command line. The HELP command provides information on
running the program and the QUIT command exits the program.

• With the -c option, DataGen parses & executes <command line>. After everything in <command
line> has been executed, DataGen exits. See the file devkit/Makefile.in for examples.

8.2 Command line syntax
<command line> = <command> [; <command line>]

There can be more than one command in the line, separated by semicolons. For example:
PRINT ; QUIT

prints the memory contents, then quits the program.

Note: commands are case independent. We use capitals here for more clarity.

8.3 Commands

8.3.1 Quick overview

Executing the HELP command provides this information:
0. { quit | q } --------> Guess...

1. { help | h } --------> Display this help.

2. reset --------------------> Clear memory contents.

3. { exec | e } cmdline ----> Execute a shell command.

4. { readObj | ro } file.obj ---> Fill the memory with the contents of an Object file.

5. { writeObj | wo } file.obj ---> Save the contents of the memory to an Object file.

6. { readATSC | ra } file.atsc ---> Fill the memory by parsing an ATSC bitstream file.

7. { writeATSC | wa } file.atsc ---> Save the contents of the memory to an ATSC
bitstream file

8. { writeMPEG | wm } file.mpeg ---> Save the contents of the memory to a MPEG bitstream
file

9. { importDataService | ids } file.ds ----> Import the data service as described in
file.ds

10. { generateSequence | gs } file.seq outputBaseName -> Generate a test sequence file.

11. { newVirtualChannel | nvc } --------> Add/modify a Virtual Channel.

12. { newEvent | ne } --------> Add/modify an Event in the schedule of a Virtual
Channel.

13. { delVirtualChannel | dvc } --------> Delete a Virtual Channel.

14. { delEvent | de } --------> Delete an Event.

 16

15. { isolateOneSource | ios } --------> To delete all Virtual Channels but those
sharing a specific source_id.

16. { isolateOneTransportStream | iots } ----> To delete all Virtual Channels but those
sharing a specific channel_TSID.

17. { rebuildPAT | rpat } --------> Generate a new PAT based on current PMT contents.

18. { rebuildPmtPat | rpp } --------> Rebuild a complete PMT, then generate a new PAT.

19. { newProgram | np } --------> Add/modify a PMT program. Regenerate PAT.

20. { delProgram | dp } --------> Delete a PMT program. Regenerate PAT.

21. { newProgramElement | npe } --------> Add/modify a PMT program element.

22. { delProgramElement | dpe } --------> Delete a PMT program element.

23. { delCarousel | dc } --------> Delete a Data Carousel.

24. { delOrphanCarousels | doc } --------> Delete orphan Data Carousels (i.e. not
mentioned in any DST).

25. { delDataService | dds } --------> Delete a Data Service.

26. { changeTSID | tsid } --------> Change TSID value

27. print [-o outputFile] -----------> Print memory contents to standard output or to a
file.

8.3.2 RESET

Syntax: reset

Action: clear the ATSCTableSet currently in memory. All data is lost.

8.3.3 EXEC

Syntax: {exec | e} cmdline

Action: pass a command line to the underlying shell and execute it.

8.3.4 READOBJ

Syntax: {readObj | ro} file.obj

Action: reset the memory, then fill it with the contents of an Object File (see Annex D.1).

8.3.5 WRITEOBJ

Syntax: {writeObj | ro} file.obj

Action: write the memory contents to an Object File (see Annex D.1). Previously existing file is overwritten.

8.3.6 READATSC

 17

Syntax: {readATSC | ra} file.atsc

Action: reset the memory, then fill it with the results of parsing the ATSC file.

8.3.7 WRITEATSC

Syntax: {writeATSC | wa} file.atsc

Action: write the memory contents to an ATSC File. Previously existing file is overwritten.

8.3.8 WRITEMPEG

Syntax: {writeMPEG | wm} file.mpeg

Action: write the memory contents to an MPEG file. Previously existing file is overwritten.

8.3.9 IMPORTDATASERVICE

Syntax: {importDataService | ids} file.ds

Action: import a Data Service as described in file.ds and incorporate it into existing memory contents by
updating and creating MPEG/ATSC tables & Data Carousel modules, as needed.

8.3.10 GENERATESEQUENCE

Syntax: {generateSequence | gs} file.seq outputBaseName

Action: this command does not involve nor modify current memory contents. It imports a Sequence as
described in file.seq and prepares a set of “.atsc'' files, one for each step of the sequence where data has
to be sent.

Output files: “outputBaseName_ch<channel>step<step>.atsc” where <channel> is a physical channel
number and <step> is a step number for that channel.

8.3.11 NEWVIRTUALCHANNEL

Syntax: {newVirtualChannel | nvc}

Action: add/modify a Virtual Channel in the current Virtual Channel Table. User is prompted for all
necessary entries.

8.3.12 NEWEVENT

Syntax: {newEvent | ne}

 18

Action: add/modify an event an Event Information in the current Event Information Table. An optional
Extended Text description can be added/modified in the current Extended Text Table. User is prompted for
all necessary entries.

8.3.13 DELVIRTUALCHANNEL

Syntax: {delVirtualChannel | dvc}

Action: remove a Virtual Channel from the current Virtual Channel Table, as well as all corresponding
events in the current Event Information Table & Extended Text Table (based on source_id). User is
prompted for all necessary entries.

8.3.14 DELEVENT

Syntax: {delEvent | de}

Action: remove an Event from the current Event Information Table, as well as corresponding description in
the Extended Text Table, if any. User is prompted for all necessary entries.

8.3.15 ISOLATEONESOURCE

Syntax: {isolateOneSource | ios}

Action: isolate one source by deleting all Virtual Channels in the current Virtual Channel Table but those
sharing a specific source_id value. All corresponding events are removed from the current Event
Information Table and Extended Text Table. User is prompted for deliverySystemType and source_id.

8.3.16 ISOLATEONETRANSPORTSTREAM

Syntax: {isolateOneTransportStream | iots}

Action: isolate one Transport Stream by deleting all Virtual Channels in the current Virtual Channel Table
but those sharing a specific channel_TSID value. All corresponding events are removed from the current
Event Information Table and Extended Text Table. User is prompted for deliverySystemType and
channel_TSID.

8.3.17 REBUILDPAT

Syntax: {rebuildPAT | rpat}

Action: reset current Program Association Table and generate a new one based on current Program Map
Tables (method rebuildPMT(...) of tools.simulation.ATSCTool).

8.3.18 REBUILDPMTPAT

Syntax: {rebuildPmtPat | rpp}

 19

Action: first update the current Program Map Tables by adding missing Program Elements, based on
current Virtual Channel Table contents as well as current Data Service Table & current DSM-CC Data
Carousel contents. Second, reset current Program Association Table and generate a new one, exactly as in
REBUILDPAT.

Note: all existing Programs and Program Elements are kept.

8.3.19 NEWPROGRAM

Syntax: {newProgram | np}

Action: add or modify a program in the current Program Map Tables. Then reset the current Program
Association Table and generate a new one, exactly as in REBUILDPAT. User is prompted for all necessary
entries.

Note: all existing Programs and Programs Elements are kept.

8.3.20 DELPROGRAM

Syntax: {delProgram | dp}

Action: remove an existing program from the current Program Map Tables. Then reset the current Program
Association Table and generate a new one, exactly as in REBUILDPAT. User is prompted for a
program_number value.

8.3.21 NEWPROGRAMELEMENT

Syntax: {newProgramElement | npe}

Action: add or modify a Program Element in an existing Program of the current Program Map Tables. The
Program Association Table is not modified. User is prompted for all necessary entries.

8.3.22 DELPROGRAMELEMENT

Syntax: {delProgramElement | dpe}

Action: remove a Program Element from an existing Program in the current Program Map Tables. Program
Association Table is not modified. User is prompted for a program_number value.

8.3.23 DELCAROUSEL

Syntax: {delCarousel | dc}

Action: remove a Data Carousel from the current repository, that is all modules matching a specific
download_id value. User is prompted for a download_id value.

 20

8.3.24 DELORPHANCAROUSELS

Syntax: {delOrphanCarousels | doc}

Action: remove all orphaned Data Carousels from the current repository, that is all Data Carousels not
mentioned in any Data Service Table (not indexed by any Tap).

Note: not implemented yet.

8.3.25 DELDATASERVICE

Syntax: {delDataService | dds}

Action: remove an existing Data Service Table and all associated resources that are not mentioned in any
other Data Service Table (not indexed by any Tap).

8.3.26 CHANGETSID

Syntax: {changeTSID | tsid}

Action: change the current Transport Stream ID value (associated with the current data set). User is
prompted for a new tsid value.

8.3.27 PRINT

Syntax: print [-o outputFile]

Action: print all memory contents in a readable manner with hierarchical indentation, either to the standard
output or to a file (if outputFile specified).

8.4 Assumptions and Simplifications
These involve both the tools.simulation.DataGen application and the
tools.simulation.ATSCByteArrayOutputStream of the devkit.

• Application resources are conveyed by means of Data Carousel only.

• The resources for a single application are contained in only one data carousel. One data carousel
contains resources for only one application: 1 application <=> 1 downloadId.

• Only one-layer Data Carousel has been implemented so far. Grouping is ignored.

• In a generated Data Service, each Data Service Table Tap points to a single module (not to an
entire data carousel).

• One Virtual Channel per source_id. This may not always be the case in reality.

• When encoding Data Carousels, the following choices have been made concerning Download Info
Indication messages (DIIs):

 21

1. Maximum length of module loop is set to 4046 bytes (case with a dsmccAdaptationHeader , 16
bytes for the dsmccMessageHeader, no privateData, i.e. 4070 bytes for the rest of the
userNetworkMessage()).

2. The blockSize field is set to its maximum value, which is 4066 bytes (stream_type 0x0B, see
ATSC standard A/90).

3. transaction_id is set to the value of the last module processed.

4. All DSM-CC sections are encoded with a CRC32.

5. dsmccAdaptationHeader almost always present.

6. 4084 bytes maximum for userNetworkMessage(): 14 bytes (12 + 2) for the
dsmccMessageHeader and 4070 bytes for the rest of the userNetworkMessage().

7. There is no private data: privateDataLength = 0.

8. Maximum length of module loop is 4070-24 = 4046 bytes ; moduleInfoDescription = 0xFF for
"not compressed".

DII: dsmccAdaptationHeader almost always present. 4084 bytes max for
userNetworkMessage(), 14 bytes (12 + 2) for the dsmccMessageHeader, 4070 bytes max for the
rest of the userNetworkMessage()

• No private data: privateDataLength must be set to 0
• Max length of module loop is 4070-24 = 4046 bytes
• blockSize = max (no real meaning)
• moduleInfoDescription must be set to 0xFF to indicate not compressed
• CRC32 is used for the DSM-CC sections
• transactionId value = value in the very last module processed

 22

9 THE FEEDER PROGRAM

This is a stand-alone application that simulates low-level native box functions such as tuning & reception. It
can be used to use and demonstrate capabilities of both the API implementation and the Set-Top Box
simulation. It includes a graphical interface through which the user can choose to send data to the Set-Top
Box simulation, as well as browse the content of the data actually sent. This program is located in
tools.transport.Feeder.

Feeder has a pre-defined set of data files (see the constants in class ControlFrame), each one
corresponding to a physical channel. The core behavior of Feeder is as follows: Each time the user selects a
button, it copies the corresponding data file and sends it to a FIFO file ('output'). Typically the Set-Top Box
simulation will read data from 'output'. Feeder also dumps to a FileContentFrame window a human-readable
view of the data thus sent.

Optionally, Feeder can receive commands from a 'back-channel' FIFO. Typically, the Set-Top Box simulation
can send commands to that FIFO such as "change physical channel to #3" (simulation of a remote control).
Detailed description of the 'output' FIFO bit stream syntax can be found in ANNEX B. Detailed description of
the 'back-channel' FIFO bit stream syntax can be found in [NEW ANNEX].

Descriptions of the user interface follow:

9.1 Main window (ControlFrame component)

This window includes a menu and a set of buttons. It's always visible. Buttons are used to send data to the
'output'. Most simply send preloaded data, each button corresponding to a different physical channel;
whereas the Stock Feed button activates/deactivates the generation of random stock quotes on the same
physical channel that includes the Stock Ticker data. (Note: Stock Feed is implemented in the
applications.xlets.stock package).

The menu entry param allows the user to set the different file system paths used by the Feeder application
to read and write data (i.e. where the FIFO files are). It invokes the Setting component.

The menu entry mode permits to switch on and off the back-channel usage. When on, the Feeder
application will not only react to user commands (i.e. pressed buttons) but also to send back-channel
commands (typically channel switching commands coming from the simulation). When off, back-channel
commands are not read (they will accumulate in the back-channel FIFO).

The last menu entry allows exiting the Feeder application.

9.2 Browser window (FileContentFrame & TreeContentPrintStream components)

FileContentFrame is a browsable tree describing all data sent so far to 'output'. It is always visible. Each
time a new file is sent, a view of its contents is added at the top level of this tree by the
TreeContentPrintStream component. The user can click on any element of the tree to expand or shrink a
branch.

9.3 Parameters window (Settings component)

[NOTE: The implementation may not be totally implementing these behaviors]

This window appears only when the user selects the param entry in the menu. If allows to change the
default values of:

o input path: the path where the set of test data files is. Each time this path is changed, the data
files are reloaded.

 23

o output path: the path where the 'output' FIFO file should be. Each time this path is changed,
the output file is closed then re-opened for the new path.

o output: the name of the 'output' FIFO file. Each time this name is changed, the 'output' file is
closed then re-opened for the new name.

[back-channel???]

ANNEX A. JAVA RUNTIME ENVIRONMENT EXTENSIONS

The Java Runtime Environment (JRE) extensions implement added functionality to several java.io
classes. However, because changes were made to some Java source code that is part of the Sun Java
Development Kit, these changed files are not delivered as part of the NIST DE. This appendix will describe
the changes needed, however.

The following classes have been modified in order to provide the capability to read from Carousel files:

java.io.FileReader

java.io.FileInputStream

java.io.RandomAccessFile

A new class, CarouselFileConnection has been added to the java.io package. This is a static
class that manages a database of FileDescriptors for Carousel Files. It really is the Carousel File
System: all opened Carousel Files are registered in it. More information about this class can be found in
Section A.1.

Finally, a new ‘C’ library was created in order to still access the native implementation of some java.io
functions: this library was called jreX.

The general idea was to implement in Java a branched treatment of java.io functions to replace the
previously native implementation. In the case of a regular file, we call the “old” native implementation
through the jreX library; in the case of a carousel file, the code is present in the function itself. Here is an
example for the read() method of java.io.FileInputStream:

 public int read() {
 if(fileIsCarouselFile) {

// FileInputStream instantiated
// around a carousel file.

 // Java implementation
 // …
 } else {
 // FileInputStream instantiated

// around a regular file
// native implementation

 return readBridge();
 }
 }

 /* This new native function allows

 * to go around the name conflict
 * and access old native java.io implementation.
 * readBridge is implemented by jreX.c.

 */

 24

 public native int readBridge();

With the corresponding ‘C’ implementation of readBridge() in jreX.c:

/*
 * Class: java_io_FileInputStream
 * Method: readBridge
 * Signature: ()I
 */

JNIEXPORT jint JNICALL Java_java_io_FileInputStream_readBridge
(JNIEnv * env, jobject thisObj) {

return Java_java_io_FileInputStream_read(env, thisObj);
}

The same scheme was applied to all native methods. A detailed description of all necessary changes can be
found in the source code tree under ext/jreX/javalib/changes/. The changed versions of the java.io
Java source files should be placed in the ext/jreX/javalib/src/java/io directory in order for the build system to
find them. The build system will attempt to incorporate the changed files into the NIST DASE environment
after running the command ‘configure –with-jrex’ from the top-level directory. Consult the README file
in the top-level directory for instructions in performing the build.

A.1 Details of the CarouselFileConnection Class

The role of java.io.CarouselFileConnection is to implement a carousel file system in addition to the
existing regular file system. This means managing a database linking each opened CarouselFile to its
FileDescriptor. This FileDescriptor is from the java.io package, following the DASE API design that
implies uniform access to both disk files and carousel files. CarouselFileConnection has package visibility
only and was designed in two parts:

• A static part with package visibility that manages a list of open connections: A hash table of
{FileDescriptor, CarouselFileConnection} entries.

• A non-static part with private visibility that manages 1 or more opened connections to a
specific CarouselFile.

The static part offers an interface to other members of the java.io package, namely FileInputStream,
FileReader and RandomAccessFile. This interface will typically be called when the regular java.io classes
need to deal with CarouselFile instances. Functions include creating a CarouselFileConnection,
adding/removing users to a CarouselFileConnection and getXXX() functions to access the file. Creating
a CarouselFileConnection simply means creating a new FileDescriptor and associating it to the
CarouselFile through a new CarouselFileConnection instance.

The non-static part is private and represents one opened file with one or more users. A
CarouselFileConnection instance whose number of users falls back to zero is automatically removed from
the static table.

ANNEX B. BITSTREAM SYNTAX

In the early steps of the DASE API implementation, ATSC PSIP tables were needed for testing. Since no
data was available on the air, we had to build our own test data. We needed ATSC PSIP tables only and

 25

were not dealing with any real-time issue, hence decided to avoid most of the MPEG encoding/decoding by
encoding the MPEG payload only, that is the ATSC PSIP tables.

A simplified bit stream format called '.atsc' format was therefore created. Its basic component is one packet,
with a short header (a dozen of bytes) and a payload carrying one entire PSIP table. Later, as needed by the
tests, other type of data were added: Data Carousel modules, acknowledgement ('ACK') messages for box-
native actions such as shifting channels from the remote control, and PCR messages.

PCR messages were added when we started using an underlying parser (C program) that would parse
actual MPEG files and transmit data to different modules including the simulation.

ACK messages were added when we started simulating channel shifting through multiple physical channels
with a Feeder program. This Feeder program uses a pre-defined set of '.atsc' files, one for each channel (in
the tree: devkit/src/tool/transport/GFeederApplication).

Here is the pseudo-code bit stream syntax of one '.atsc' packet (header + payload):

16/24 bytes header

fifoHeader {
 headerType 8 bits // data or table

 if (headerType == TABLE) {

 table_id 8 bits
 reserved 3 bits = 0
 pid 13 bits
 table_id_extension 16 bits
 table_type 16 bits
 reserved 12 bits = 0
 tableLength 20 bits
 reserved 32 bits = 0

 } else if (headerType == DATA) {

 dataId 8 bits // DSM-CC Carousel only for now
 reserved 3 bits = 0
 pid 13 bits
 downloadId 32 bits
 reserved 8 bits = 0
 moduleVersion 8 bits
 moduleId 16 bits
 moduleSize 32 bits

 } else if (headerType == ACK || headerType == NACK) {

 command 8 bits
 if (command == CHANGE_CHANNEL) {
 newChannel 16 bits
 } else {
 reserved 3 bits = 0
 targetPid 13 bits
 }
 reserved 96 bits = 0

 26

 } else if (headerType == PCR) {

 adaptationFlags 8 bits
 reserved 3 bits = 0
 pid 13 bits
 reserved 22 bits = 0
 if (adaptationFlags & 0x10 == '1') {
 pcr 42 bits
 } else {
 reserved 42 bits = 0
 }
 reserved 32 bits = 0

 }
}

if (fifoHeader.headerType = DATA && fifoHeader.dataId = DATA_CAROUSEL) {
 reserved 23 bits = 0
 pts_is_valid 1 bit
 reserved 7 bits = 0
 pts 33 bits
}

fifoData {
 // tableLength or moduleSize bytes of data
}

CONSTANTS:

headerType: 0x01 -> TABLE

 0x02 -> DATA

 0x21 -> ACK

 0x22 -> NACK

 0x23 -> PCR

 other values are reserved for future use

dataId: 1 -> DSM-CC Data Carousel

 other values are reserved for future use

command: 0x31 ("1") -> CHANGE_CHANNEL

 0x32 ("2") -> OPEN

 0x33 ("3") -> START

 0x34 ("4") -> STOP

 0x35 ("5") -> CLOSE

 27

ANNEX C. PLATFORM INSTALLATION NOTES

C.1 Summary of supported Platforms

In general, only java version 1.2 and higher can be used since the Set-Top Box simulation is using features
present in 1.2 but not in the pJava defined in DASE-1. Also, native threads are preferred to green threads
since the Data Carousel API is implemented with JNI.

The table below summarizes our experience of running JavaSTBMain and the Feeder on various Linux,
Solaris, and Windows NT platforms.

Platform JDK Outcome

Linux jdk 1.2.2rc4 native threads (Blackdown
implementation)

Successful

Linux jdk 1.2.2_008 green threads JavaSTBMain hangs
during initialization
process; Feeder works

Linux jdk 1.3.0 Successful

Red Hat Linux 7.1/Intel P4 jdk 1.3.1 Successful

Red Hat Linux 7.2/Intel P3 jdk 1.3.1 Successful

Solaris 2.7/Intel jdk 1.2.2_05 Successful

Windows NT 4.0 jdk 1.3.1 Successful, except for
jreX extensions.

C.2 Linux Notes

The Simulation has been compiled and run successfully on a Red Hat 7.1 system with JDK version 1.3.1
available from Sun. Also, in order to compile the Simulation, you'll need a JMF library. Sun hasn't released
JMF for Linux, but you can copy the jmf.jar file from the Solaris JMF distribution to the /usr/jmf/lib
directory on your Linux workstation. (At this time, the Simulation doesn't invoke the JMF calls, so the
remaining JMF libraries are not needed; only the class files).

The Simulation has been compiled and run on a Red Hat 6.0 system with the JDK version 1.2.2 available
from Sun. In order to run the Simulation on Red Hat 6.0, our experience shows that the native threads library
works best. Therefore, you will need to have the path to this library in your LD_LIBRARY_PATH
environment variable. The following directories need to be added to LD_LIBRARY_PATH:
/usr/java/jre/lib/i386
/usr/java/jre/lib/i386/classic
/usr/java/jre/lib/i386/native_threads

C.3 Windows NT Notes

The Windows NT instructions assume you have the Cygwin Tools 1.1.x or higher installed. These tools
provide Unix utilities that ease the porting. The Unix tools include gcc, Makefile, and the bash shell.

As with Solaris and Linux, certain environment variables need to be set before running configure. (The
following assumes the use of a bash compatible shell for environment variable syntax)

Note: the use of the forward “/” slashes for setting these variables.

 28

JAVA_HOME=//C/jdk1.3

JMFHOME=//C/jmf1.1

export JAVA_HOME

export JMFHOME

The CLASSPATH can be set as follows and needs to be set properly before compiling or running. The
CLASSPATH is needed for running any component of the simulation, for example JavaSTBMain and
Feeder. Thus, since these components are often started from separate windows, it is advisable that the
CLASSPATH be set either in each window, or in the global Windows environment variable settings dialog
box)

Important Note: the use of the backward “\” slashes for settings these variables.

ROOTDIR="C:\nist_ri"

export ROOTDIR

CLASSPATH="${ROOTDIR}\simulation\runtime\stb.jar;${ROOTDIR}\simulation\runtime\d
ase.jar;${ROOTDIR}\simulation\runtime\devkit.jar"

export CLASSPATH

ANNEX D. FILE FORMATS USED BY DATAGEN

Filenames have a preferred extension for each format. Theses extensions are not mandatory at all, but they
are the ones used for the data files delivered with the NIST RI.

For each type, associated commands in tools.simulation.DataGen are given (see section 0).

D.1 OBJ File

Preferred extension: .obj

Associated commands: READOBJ, WRITEOBJ

Description: this file format defines a complete representation of one stb.datatypes.ATSCTableSet
instance, written through a java.io.ObjectOutput (see tools.simulation.ATSCTool.writeToObjectOutput()).

D.2 “.atsc” File

Preferred extension: .atsc

Associated commands: READATSC, WRITEATSC

Description: this file format defines a bit stream that carries a subset of the information contained in a
MPEG bit stream (see ANNEX B). It was defined & used to feed the Set-Top Box Simulation with test data.
It contains:

• MPEG and ATSC tables.

 29

• Data Carousel modules.

• ``hardware'' notifications such as ``physical channel was successfully changed to number 57''.
Practically these messages come from an application that simulates the hardware
(tools.transport.Feeder).

Associated classes: such a bit stream can be encoded using methods from
tools.simulation.ATSCByteArrayOutputStream and parsed using a stb.managers.ATSCByteStreamParser
object.

Associated user applications: a user can create an “.atsc'' bit stream file in two ways:

• From scratch, editing tables & data carousel using the DataGen application.

• From an MPEG bit stream, using a C parser.

Detailed syntax: see ANNEX B.

D.3 MPEG File

Preferred extension: .mpeg

Associated command: WRITEMPEG

Description: this file format defines a standard MPEG bit stream.

Associated class: tools.simulation.MPEGWrapper is a filter that encapsulates a “.atsc'' bit stream (see
ANNEX B) into a MPEG bit stream.

D.4 DS File

Preferred extension: .ds

Associated command: IMPORTDATASERVICE

Description: this file format defines in a human-readable way one Data Service, as defined by ATSC
standard A/90.

Syntax: the syntax is case-sensitive! The unit is a line. The lines can be written in any order. The global
syntax of a line is defined by the first word on the line:

• if the first word of a line starts with '#', it is a comment line and will be ignored by
IMPORTDATASERVICE.

• if the first word of a line is 'dataService', the line will define the attributes of the Data Service.

• in all other cases, lines are grouped that have the exact same first word. Each group describes one
application of the Data Service.

Example:

This line starts with a '#' and is therefore a comment

 30

Data Service attributes: lines start with the "dataService" word

Data Service name (goes in DST ServiceInfo descriptor loop).

dataService name theDataServiceName

Def. of an app: lines are linked together by the "app1" word

Application AppId:

<appWord> appId { DASE <providerAuthority> <providerIndex> <appName> <appVersion> | UN
KNOWN <appIdBytes> }

Where:

<appWord> identifies the app., within the context of this .ds file

<providerAuthority> is an hex value, e.g. d4e76590

<providerIndex>

<appName> is a string

<appVersion> is an array of 8-bit hex values, e.g. 23 bf 4c

Example:

app1 appId DASE

Application downloadId (hex form).

NOTE: if you plan on having multiple Data Services coming sequentially

on a program, you should make sure downloadIds are different.

app1 downloadId 12345678

Application profile & level (1 byte for each, hex form).

app1 profile FE 7A

Application title

app1 title theApplicationTitle

Application taskScope & taskPriority (1 byte for each, hex form).

app1 task 01 11

OPTIONAL: indicates that the Application should be automatically

launched when received.

-> when autoLaunch, all Taps get their systemStateFlag set to "Bootstrap"

(0x01) instead of "Runtime" (0x00)

app1 autoLaunch

AT LEAST ONE: Application entryPoint class name (Xlet).

As defined by S13, an Application can contain multiple entryPoints ;

not to be confused with a DASE Application = 1 Xlet.

-> one S13 App = many DASE Apps

Syntax: <appWord> entryPoint <className>

app1 entryPoint mypackage.MyXlet

 31

Application list of module files, including the entryPoints ones.

Syntax for one module:

<appWord> module <fileName> [c | classPath] [e | entryPoint] [n | name <name>]

[contentType <contentType>] [version <vNumber>]

[{be | bigEndian} | {le | # littleEndian} | {ue | unspecifiedEndian}]

Where:

<appWord> identifies the app, within the context of this .ds file

<fileName> (string) the path of the file containing the data

<name> (string) the full classname (including packages)

<contentType> (string) the MIME type of the data carried by the module

<vNumber> (hex, 1 byte) the version number of the module

bigEndian, littleEndian & unspecifiedEndian define the value of the

moduleEndian field (see DII in S13). unspecifiedEndian is the default

value.

app1 module theFileName c e n thepackagename.TheClassName contentType application/java v
ersion 1

app1 module anotherFileName c e name thepackagename.AnotherClassName contentType applica
tion/java version 1

D.5 SEQ File

Preferred extension: .seq

Associated command: GENERATESEQUENCE

Description: this file format defines in a human-readable way a test sequence, generally used to produce a
bitstream. This includes timing and different file formats such as ``.atsc'', OBJ & DS. It can be used by
tools.transport.Feeder.

Example:

including all possibilities:

Sequence file to test the simulation

1 atsc nist20_with_events.atsc

wait 5

2 ds BoxScore.ds

wait 10

3 obj 05mo.obj

wait

 32

2 ds BoxScoreAndTest.ds

wait 5

2 ds Test.ds

wait 8

1

Below, each line is explained, as far as what a program executing such a sequence should do.

Sequence file to test the simulation

A line is ignored if empty or the first character is '#'.

1 atsc nist20_with_events.atsc

Change to physical channel 1 (if necessary). Send an atsc file named ``nist20_with_events.atsc''.

wait 5

Wait 5 seconds before executing next line.

2 ds BoxScore.ds

Change to physical channel 2. Read a data source file named ``BoxScore.ds'', encode it in ``.atsc'' format
and send it.

wait 10

Wait 10 seconds before executing next line.

3 obj 05mo.obj

Change to physical channel 3. Read an object file named "05mo.obj", encode it in atsc format and send it.

wait

Wait for a user input.

1

Switch to physical channel 1.

ANNEX E. EXAMPLE SETUP ENVIRONMENTS

Following is an example of environment setup (for example, to put in a .bashrc file). In this example,
we’re using JMF 1.1 installed as /usr/local/jmf/lib/jmf.jar. Any later version of JMF also
works, but it is advised to compile against JMF 1.1 since it is the version specified by the DASE-1 standard.

Notes:

§ The ‘j’ alias (see examples below) for the ‘java’ command: it is necessary for using jreX
extensions, which implement the Data Carousel API (see section 4.3). It uses a non-standard
JVM option: '-Xbootclasspath'. Indeed, trying to set directly the
sun.boot.class.path property with the '-D' option didn't prove to be effective before
the end of the JVM boot process.

§ The 'JMFHOME' variable indicates where JMF is installed. The minimum install for JMF is to
put the 'jmf.jar' file, version 1.1, under $JMFHOME/lib/.

 33

E.1 CSH Shell Example

The following is an example of additional environment variables and aliases that should be included in the
.cshrc file.

#####################################
Sample Environment for NIST DASE DE
#####################################

setenv JAVA_HOME /usr/java

setenv JMFHOME /usr/jmf

setenv HOME /export/home/test

setenv ROOTDIR ${HOME}/nist_ri

setenv RUNTIME ${ROOTDIR}/simulation/runtime

setenv JAVA_ARCH i386

setenv CLASSPATH "${RUNTIME}/stb.jar:${RUNTIME}/devkit.jar:${RUNTIME}/dase.jar:${JMFHOME}/lib/jmf.jar"

alias j 'java -Xbootclasspath:${RUNTIME}/jreX.jar:${JAVA_HOME}/jre/lib/rt.jar:${CLASSPATH} -Dsun.boot.library.path=
${JAVA_HOME}/jre/lib/i386:${RUNTIME}'

E.2 BASH Shell Example

#####################################
Sample Environment for NIST DASE DE
#####################################

For JMF, the minimum install is to put the jmf.jar file, version 1.1,
under $JMFHOME/lib

JMFHOME=/usr/local/jmf
JAVA_HOME=/usr/java
JAVA_ARCH=i386

ROOTDIR=${HOME}/nist_ri
RUNTIME=${ROOTDIR}/simulation/runtime

export JMFHOME JAVA_HOME JAVA_ARCH ROOTDIR RUNTIME

settings specific to the use of jreX extensions
set java.class.path

CLASSPATH=${RUNTIME}/stb.jar:${RUNTIME}/devkit.jar:${RUNTIME}/dase.jar:${JMFHOME}/lib/jmf.jar
export CLASSPATH

alias j ='java -Xbootclasspath:${RUNTIME}/jreX.jar:${JAVA_HOME}/jre/lib/rt.jar:${CLASSPATH} -Dsun.boot.library.path=
${JAVA_HOME}/jre/lib/i386:${RUNTIME}'

